Full parallax three-dimensional computer generated hologram with occlusion effect using ray casting technique
نویسندگان
چکیده
Holographic display is capable of reconstructing the whole optical wave field of a three-dimensional (3D) scene. It is the only one among all the 3D display techniques that can produce all the depth cues. With the development of computing technology and spatial light modulators, computer generated holograms (CGHs) can now be used to produce dynamic 3D images of synthetic objects. Computation holography becomes highly complicated and demanding when it is employed to produce real 3D images. Here we present a novel algorithm for generating a full parallax 3D CGH with occlusion effect, which is an important property of 3D perception, but has often been neglected in fully computed hologram synthesis. The ray casting technique, which is widely used in computer graphics, is introduced to handle the occlusion issue of CGH computation. Horizontally and vertically distributed rays are projected from each hologram sample to the 3D objects to obtain the complex amplitude distribution. The occlusion issue is handled by performing ray casting calculations to all the hologram samples. The proposed algorithm has no restriction on or approximation to the 3D objects, and hence it can produce reconstructed images with correct shading effect and no visible artifacts. Programmable graphics processing unit (GPU) is used to perform parallel calculation. This is made possible because each hologram sample belongs to an independent operation. To demonstrate the performance of our proposed algorithm, an optical experiment is performed to reconstruct the 3D scene by using a phase-only spatial light modulator. We can easily perceive the accommodation cue by focusing our eyes on different depths of the scene and the motion parallax cue with occlusion effect by moving our eyes around. The experiment result confirms that the CGHs produced by our algorithm can successfully reconstruct 3D images with all the depth cues.
منابع مشابه
Digital Holography and Three Dimensional Imaging (DH)
We have investigated the image type full-color computer-generated hologram that has full parallax and can be reconstructed with three color LEDs. The object of the hologram is processed from 3D computer graphics polygon data and has shaded surface with hidden surface removal. The optical reconstructed image from the printed hologram is evaluated. © 2011 Optical Society of America OCIS codes: 09...
متن کاملThree-dimensional display of a horizontal-parallax-only hologram.
We propose a three-dimensional (3D) holographic display by converting an optically recorded complex full-parallax (FP) hologram to an off-axis horizontal-parallax-only (HPO) hologram. First, we record the complex FP hologram of an object using optical scanning holography. We then convert the complex FP hologram to an off-axis HPO hologram through fringe-matched Gaussian low-pass filtering and w...
متن کاملRecurrence formulas for fast creation of synthetic three-dimensional holograms.
A method for accelerating the synthesis of computer-generated three-dimensional (3-D) holograms, based on conventional ray tracing, is proposed. In ray tracing, computers expend almost all of their resources in calculating the 3-D distances between each one of the point sources composing an object and a sampling point on the hologram. We present recurrence formulas that precisely compute the di...
متن کاملComputer generated hologram from point cloud using graphics processor.
Computer generated holography is an extremely demanding and complex task when it comes to providing realistic reconstructions with full parallax, occlusion, and shadowing. We present an algorithm designed for data-parallel computing on modern graphics processing units to alleviate the computational burden. We apply Gaussian interpolation to create a continuous surface representation from discre...
متن کاملFast Hologram Synthesis for 3D Geometry Models using Graphics Hardware
The holographic visualization of three-dimensional object geometry still represents a major challenge in computational holography research. Besides the development of suitable holographic display devices, the fast calculation of the hologram’s interference pattern for complex-shaped three-dimensional objects is an important pre-requisite of any interactive holographic display system. We present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012